Abstract

Epidermal differentiation is a multilevel process in which keratinocytes need to lose their organelles, including their mitochondria, by autophagy. Disturbed autophagy leads to thickening of the epidermis as seen in pachyonychia congenita (PC), a rare skin disease caused by mutations in keratins 6, 16 and 17. To ask if mitophagy, the selective degradation of mitochondria by autophagy, is disturbed in PC and, if so, at which stage. Immortalized keratinocytes derived from patients with PC were used in fluorescence-based and biochemical assays to dissect the different steps of mitophagy. PC keratinocytes accumulated old mitochondria and displayed disturbed clearance of mitochondria after mitochondrial uncoupling. However, early mitophagy steps and autophagosome formation were not affected. We observed that autolysosomes accumulate in PC and are not sufficiently recycled. We propose an influence of keratins on autolysosomal degradation and recycling. What's already known about this topic? Terminal epidermal differentiation is a multistep process that includes the elimination of cellular components by autophagy. Autophagy-impaired keratinocytes have been shown to result in thickening of epidermal layers. Hyperkeratosis also occurs in pachyonychia congenita (PC), a rare skin disease caused by mutations in keratins 6, 16 and 17. What does this study add? Keratins contribute to mitochondrial quality control as well as maintenance of mitochondria-endoplasmic reticulum contact sites. Keratins influence autolysosomal maturation or reformation. What is the translational message? Overaged mitochondria and autolysosomes accumulate in PC. Mutations in keratin 6a lead to severely impaired mitophagy, which might contribute to PC pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call