Abstract
Several human liver diseases are associated with formation of Mallory body (MB) inclusions. These hepatocyte cytoplasmic deposits are composed primarily of hyperphosphorylated keratins 8 and 18 (K8/K18). Feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet is a well-established mouse model of MBs. K8 overexpression, and K8-null or K18-null mouse models, indicate that a K8-greater-than-K18 expression ratio is critical for MB formation. We used established transgenic mouse models to study the effect of K18 overexpression and phosphorylation, or keratin filament disorganization, on MB formation. Five mouse lines were used: nontransgenic, those that overexpress wild-type K18 or the K18 phosphorylation mutants Ser33-to-Ala (S33A) or Ser52-to-Ala (S52A), and mice that overexpress K18 Arg89-to-Cys, which causes collapse of the keratin filament network into dots. DDC feeding induced MBs in nontransgenic livers, but MBs were rarely seen in any of the K18 transgenic mice. Wild-type K18 overexpression protected mice from DDC-induced liver injury. K18 overexpression protects mice from MB formation and from DDC-induced liver injury, which supports the importance of the K8-to-K18 ratio in MB formation. The effect of K18 on MB formation is independent of hepatocyte keratin filament organization or K18 Ser33/Ser52 phosphorylation. Keratin filament collapse, which is a major risk for acute liver injury, is well tolerated in the context of chronic DDC-mediated liver injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.