Abstract

The planar isosceles three-body problem where the two symmetric bodies have small masses is considered as a perturbation of the Kepler problem. We prove that the circular orbits can be continued to saddle orbits of the Isosceles problem. This continuation is not possible in the elliptic case. Their perturbed orbits tend to a continued circular one or approach a triple collision. The basic tool used is the study of the Poincare maps associated with the periodic solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.