Abstract

AbstractThe authors show how Kendall's tau can be adapted to test against serial dependence in a univariate time series context. They provide formulas for the mean and variance of circular and noncircular versions of this statistic, and they prove its asymptotic normality under the hypothesis of independence. They present also a Monte Carlo study comparing the power and size of a test based on Kendall's tau with the power and size of competing procedures based on alternative parametric and nonparametric measures of serial dependence. In particular, their simulations indicate that Kendall's tau outperforms Spearman's rho in detecting first‐order autoregressive dependence, despite the fact that these two statistics are asymptotically equivalent under the null hypothesis, as well as under local alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.