Abstract

Although the direct-contact HfO2/Si structure has been demonstrated to have advantages on an equivalent oxide thickness scaling of <1 nm, characteristic electric charges have been reported to be formed at the HfO2/Si interface. A Kelvin probe method was used to examine the electric charges in HfO2/Si structures. We first describe the basic principles behind the Kelvin probe measurements of electric charges in an oxide/Si structure, and then point out what effect the surface adsorbates have on the measured contact-potential-difference voltage (VCPD). A large VCPD difference (>0.5 V) was observed between the direct-contact HfO2/Si and HfO2/SiO2/Si stack surfaces, which suggests the existence of a strong interface dipole. This result is consistent with previous reports using electrical measurements of metal–oxide–semiconductor capacitances. We also found that the dipole completely disappeared after ultrahigh vacuum annealing at 700 °C, and appeared again after exposure to O2 at room temperature. The formation of a dipole by exposure to O2 had a correlation with the formation of Si–O bonds at the HfO2/Si interface. We propose that interface Si–O–Hf bonding naturally produces a strong interface dipole from simple electrostatic potential analysis mainly due to the effect of the large dielectric constant of HfO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.