Abstract
Kelvin probe force microscopy (KPFM) is a tool that enables nanometer-scale imaging of the surface potential on a broad range of materials. KPFM measurements require an understanding of both the details of the instruments and the physics of the measurements to obtain optimal results. The first part of this review will introduce the principles of KPFM and compare KPFM to other surface work function and potential measurement tools, including the Kelvin probe (KP), photoemission spectroscopy (PES), and scanning electron microscopy (SEM) with an electron beam induced current (EBIC) measurement system. The concept of local contact potential difference (LCPD), important for understanding atomic resolution KPFM, is discussed. The second part of this review explores three applications of KPFM: metallic nanostructures, semiconductor materials, and electrical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.