Abstract

Abstract KELT-9 b is an ultra-hot Jupiter transiting a rapidly rotating, oblate early-A-type star in a polar orbit. We model the effect of rapid stellar rotation on KELT-9 b’s transit light curve using photometry from the Transiting Exoplanet Survey Satellite to constrain the planet’s true spin–orbit angle and to explore how KELT-9 b may be influenced by stellar gravity darkening. We constrain the host star’s equatorial radius to be 1.089 ± 0.017 times as large as its polar radius and its local surface brightness to vary by ∼38% between its hot poles and cooler equator. We model the stellar oblateness and surface brightness gradient and find that it causes the transit light curve to lack the usual symmetry around the time of minimum light. We take advantage of the light-curve asymmetry to constrain KELT-9 b’s true spin–orbit angle ( ), agreeing with Gaudi et al. that KELT-9 b is in a nearly polar orbit. We also apply a gravity-darkening correction to the spectral energy distribution model from Gaudi et al. and find that accounting for rapid rotation gives a better fit to available spectroscopy and yields a more reliable estimate for the star’s polar effective temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.