Abstract

Efficient N–I-doped ZnO photocatalysts with hierarchical structures are fabricated with kelp as the template. Abundant nitrogen and iodine are successfully simultaneously introduced into the bulk ZnO crystals though calcination under high temperature (600°C). The morphology, structure, composition, and optical absorption properties of the kelp-templated ZnO are characterized by X-ray diffraction (XRD), field-emission scanning microscopy (FESEM), transmission electron microscopy (TEM), and diffuse reflectance spectra (DRS), respectively. The band gap of the kelp-templated ZnO is narrowed by the N–I coping. The photocatalytic activity under UV-irradiation of the kelp-templated ZnO is about 23.1 times and 1.1 times that of common ZnO and P25, respectively. In addition, no obvious activity of the kelp-templated ZnO is decreased, during five cycle runs. The efficient photocatalytic activity of the kelp-templated ZnO is attributed to the sufficient UV-light utilization and efficient separation of electron–hole pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.