Abstract
N-doped carbon materials have been proven to be effective catalysts for activating peroxymonosulfate (PMS). Marine algae biomass is rich in nitrogenous substances , which can reduce the cost of N-doping process and can obtain excellent N-doped catalysts cheaply and easily. In this study, kelp biomass was selected to prepare N-doped kelp biochar (KB) materials. The high defect degree, high specific surface area, and participation of graphite N make KB have excellent catalytic degradation ability. The KB degraded 40 mg/L ofloxacin (OFL) close to 100% within 60 min, applied with PMS. Through quenching experiments and electron paramagnetic resonance spectroscopy, the degradation process dominated by non-radical pathways was determined. At the same time, O2·- and 1O2 were closely related, and a significant impact of quenching O2·- on the reaction was observed. The non-radical approach made the system excellent performance over a wide pH range and in the presence of multiple anions. The experiments of reusability confirmed the stability of the material. Its catalytic performance was restored after low-temperature pyrolysis. This research supports the use of endogenous nitrogen in biomass. It provides more options for advanced oxidation process application and marine resource development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.