Abstract

We have quantum chemically analyzed how the stability of small and larger polycyclic aromatic hydrocarbons (PAHs) is determined by characteristic patterns in their structure using density functional theory at the BLYP/TZ2P level. In particular, we focus on the effect of the nonbonded H•••H interactions that occur in the bay region of kinked (or armchair) PAHs, but not in straight (or zigzag) PAHs. Model systems comprise anthracene, phenanthrene, and kekulene as well as derivatives thereof. Our main goals are: (1) to explore how nonbonded H•••H interactions in armchair configurations of kinked PAHs affect the geometry and stability of PAHs and how their effect changes as the number of such interactions in a PAH increases; (2) to understand the extent of stabilization upon the substitution of a bay CH fragment by either C• or N; and (3) to examine the origin of such stabilizing/destabilizing interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.