Abstract

The reaction of Keggin-type polyoxometalate (POM) units, transition-metal (TM) ions, and a rigid bis(imidazole) ligand (1,4-bis(1-imidazolyl)benzene (bimb)) in a hydrothermal environment led to the isolation of four new POM-based metal-organic networks, [H2 L][CuL][SiW12 O40 ]⋅2 H2 O (1), [H2 L]2 [Co(H2 O)3 L][SiW11 CoO39 ]⋅6 H2 O (2), KH[CuL]2 [SiW11 CoO39 (H2 O)]⋅2 H2 O (3), and [CuL]4 [GeW12 O40 ]⋅H2 O (4; L=bimb). All four compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. Compounds 1 and 3 are new 3D networks with 1D channels. Compounds 2 and 4 contain 2D networks, which further stack into 3D supramolecular networks. The contributions of pH value, the negative charge of the POM, and the TM coordination modes to the construction of 3D networks were elucidated by comparing the synthetic conditions and structures of compounds 1-4. The photocatalytic properties of compounds 1-4 were investigated using methylene blue (MB) degradation under UV light. All compounds showed good catalytic activity and structural stability. The possible catalytic mechanism was discussed on the basis of active-species trapping experiments. The different photocatalytic activities of compounds 1-4 were explained by comparison of the band gaps of different POM species and different packing modes of POM units in these hybrid compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call