Abstract

Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.