Abstract

Coral reefs protect islands from tropical storm waves and provide goods and services for millions of islanders worldwide. Yet it is unknown how coral reefs in general, and carbonate production in particular, will respond to sea-level rise and thermal stress associated with climate change. This study compared the reef-building capacity of different shallow-water habitats at twenty-four sites on each of two islands, Palau and Yap, in the western Pacific Ocean. We were particularly interested in estimating the inverse problem of calculating the value of live coral cover at which net carbonate production becomes negative, and whether that value varied across habitats. Net carbonate production varied among habitats, averaging 10.2 kg CaCO3 m-2 y-1 for outer reefs, 12.7 kg CaCO3 m-2 y-1 for patch reefs, and 7.2 kg CaCO3 m-2 y-1 for inner reefs. The value of live coral cover at which net carbonate production became negative varied across habitats, with highest values on inner reefs. These results suggest that some inner reefs tend to produce less carbonate, and therefore need higher coral cover to produce enough carbonate to keep up with sea-level rise than outer and patch reefs. These results also suggest that inner reefs are more vulnerable to sea-level rise than other habitats, which stresses the need for effective land-use practices as the climate continues to change. Averaging across all reef habitats, the rate of carbonate production was 9.7 kg CaCO3 m-2 y-1, or approximately 7.9 mm y-1 of potential vertical accretion. Such rates of vertical accretion are higher than projected averages of sea-level rise for the representative concentration pathway (RCP) climate-change scenarios 2.6, 4.5, and 6, but lower than for the RCP scenario 8.5.

Highlights

  • The recent increase in the frequency and intensity of thermal-stress events has resulted in coral bleaching and coral mortality, which has subsequently changed the composition of many reef assemblages worldwide [1,2,3,4,5]

  • The rates of net carbonate production were similar on Palau and Yap, the rates were considerably different among habitats and across sites

  • In Yap, the estimated rates of net carbonate production were similar to rates in Palau, with highest rates recorded on the western outer reefs, averaging 14.1 kg CaCO3 m-2 yr-1

Read more

Summary

Introduction

The recent increase in the frequency and intensity of thermal-stress events has resulted in coral bleaching and coral mortality, which has subsequently changed the composition of many reef assemblages worldwide [1,2,3,4,5]. Because of the relatively stable sea level for over five millennia, reef flats have existed largely in a dormant state [9,10] and the expansion of reefs only occurred by gradual carbonate accumulation along the reef edges. Such lateral progradation occurred at locations where the rates of local production of calcium carbonate exceeded rates of local destruction [11,12,13,14,15,16,17,18]. Losing coral reefs as wave barriers is a critical threat to island nations that lie close to modern sea level [25, 26], especially as the sea level continues to rise

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call