Abstract
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.