Abstract

This paper aims to introduce multilevel logistic regression analysis in a simple and practical way. First, we introduce the basic principles of logistic regression analysis (conditional probability, logit transformation, odds ratio). Second, we discuss the two fundamental implications of running this kind of analysis with a nested data structure: In multilevel logistic regression, the odds that the outcome variable equals one (rather than zero) may vary from one cluster to another (i.e. the intercept may vary) and the effect of a lower-level variable may also vary from one cluster to another (i.e. the slope may vary). Third and finally, we provide a simplified three-step “turnkey” procedure for multilevel logistic regression modeling: -Preliminary phase: Cluster- or grand-mean centering variables -Step #1: Running an empty model and calculating the intraclass correlation coefficient (ICC) -Step #2: Running a constrained and an augmented intermediate model and performing a likelihood ratio test to determine whether considering the cluster-based variation of the effect of the lower-level variable improves the model fit -Step #3 Running a final model and interpreting the odds ratio and confidence intervals to determine whether data support your hypothesis Command syntax for Stata, R, Mplus, and SPSS are included. These steps will be applied to a study on Justin Bieber, because everybody likes Justin Bieber. 1

Highlights

  • This paper aims to introduce multilevel logistic regression analysis in a simple and practical way

  • The general aim of multilevel logistic regression is to estimate the odds that an event will occur while taking the dependency of data into account

  • The interpretation is similar to the case of a single-level logistic regression analysis: An increase of one unit in Grade Point Average (GPA) results in a change of B10 in the overall log-odds of owning Justin’s album for a typical pupil belonging to a typical classroom

Read more

Summary

Introduction

This paper aims to introduce multilevel logistic regression analysis in a simple and practical way.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.