Abstract

Nebular-phase spectra of SN 2006aj, which was discovered in coincidence with X-ray flash 060218, were obtained with Keck in 2006 July and the Very Large Telescope in 2006 September. At the latter epoch spectropolarimetry was also attempted, yielding an upper limit of ~ 2% for the polarization. The spectra show strong emission lines of [OI] and MgI], as expected from a Type Ic supernova, but weak CaII lines. The [FeII] lines that were strong in the spectra of SN 1998bw are much weaker in SN 2006aj, consistent with the lower luminosity of this SN. The outer velocity of the line-emitting ejecta is ~ 8000 km/s in July and ~ 7400 km/s in September, consistent with the relatively low kinetic energy of expansion of SN 2006aj. All emission lines have similar width, and the profiles are symmetric, indicating that no major asymmetries are present in the ejecta at the velocities sampled by the nebular lines (v < 8000 km/s), except perhaps in the innermost part. The spectra were modelled with a non-LTE code. The mass of 56Ni required to power the emission spectrum is ~ 0.20 Msun, in excellent agreement with the results of early light curve modelling. The oxygen mass is ~ 1.5 Msun, again much less than in SN 1998bw but larger by ~ 0.7 Msun than the value derived from the early-time modelling. The total ejected mass is ~ 2 Msun below 8000 km/s. This confirms that SN 2006aj was only slightly more massive and energetic than the prototypical Type Ic SN 1994I, but also indicates the presence of a dense inner core, containing ~ 1 Msun of mostly oxygen and carbon. The presence of such a core is inferred for all broad-lined SNe Ic. This core may have the form of an equatorial oxygen-dominated region, but it is too deep to affect the early light curve and too small to affect the late polarization spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call