Abstract

In his recent paper in History and Philosophy of Logic, John Kearns argues for a solution of the Liar paradox using an illocutionary logic (Kearns 2007). Paraconsistent approaches, especially dialetheism, which accepts the Liar as being both true and false, are rejected by Kearns as making no ‘clear sense’ (p. 51). In this critical note, I want to highlight some shortcomings of Kearns' approach that concern a general difficulty for supposed solutions to (semantic) antinomies like the Liar. It is not controversial that there are languages which avoid the Liar. For example, the language which consists of the single sentence ‘Benedict XVI was born in Germany’ lacks the resources to talk about semantics at all and thus avoids the Liar. Similarly, more interesting languages such as the propositional calculus avoid the Liar by lacking the power to express semantic concepts or to quantify over propositions. Kearns also agrees with the dialetheist claim that natural languages are semantically closed (i.e. are able to talk about their sentences and the semantic concepts and distinctions they employ). Without semantic closure, the Liar would be no real problem for us (speakers of natural languages). But given the claim, the expressive power of natural languages may lead to the semantic antinomies. The dialetheist argues for his position by proposing a general hypothesis (cf. Bremer 2005, pp. 27–28): ‘(Dilemma) A linguistic framework that solves some antinomies and is able to express its linguistic resources is confronted with strengthened versions of the antinomies’. Thus, the dialetheist claims that either some semantic concepts used in a supposed solution to a semantic antinomy are inexpressible in the framework used (and so, in view of the claim, violate the aim of being a model of natural language), or else old antinomies are exchanged for new ones. One horn of the dilemma is having inexpressible semantic properties. The other is having strengthened versions of the antinomies, once all semantic properties used are expressible. This dilemma applies, I claim, to Kearns' approach as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.