Abstract
IntroductionThe connection between driver mutations and the efficacy of immune checkpoint inhibitors is the focus of intense investigations. In lung adenocarcinoma (LUAD), KEAP1/STK11 alterations have been tied to immunoresistance. Nevertheless, the heterogeneity characterizing immunotherapy efficacy suggests the contribution of still unappreciated events. MethodsSomatic interaction analysis of top-ranking mutant genes in LUAD was carried out in the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) (N = 6208). Mutational processes, intratumor heterogeneity, evolutionary trajectories, immunologic features, and cancer-associated signatures were investigated, exploiting multiple data sets (AACR GENIE, The Cancer Genome Atlas [TCGA], TRAcking Cancer Evolution through therapy [Rx]). The impact of the proposed subtyping on survival outcomes was assessed in two independent cohorts of immune checkpoint inhibitor–treated patients: the tissue-based sequencing cohort (Rome/Memorial Sloan Kettering Cancer Center/Dana-Farber Cancer Institute, tissue-based next-generation sequencing [NGS] cohort, N = 343) and the blood-based sequencing cohort (OAK/POPLAR trials, blood-based NGS cohort, N = 304). ResultsObserving the neutral interaction between KEAP1 and TP53, KEAP1/TP53-based subtypes were dissected at the molecular and clinical levels. KEAP1 single-mutant (KEAP1 SM) and KEAP1/TP53 double-mutant (KEAP1/TP53 DM) LUAD share a transcriptomic profile characterized by the overexpression of AKR genes, which are under the control of a productive superenhancer with NEF2L2-binding signals. Nevertheless, KEAP1 SM and KEAP1/TP53 DM tumors differ by mutational repertoire, degree of intratumor heterogeneity, evolutionary trajectories, pathway-level signatures, and immune microenvironment composition. In both cohorts (blood-based NGS and tissue-based NGS), KEAP1 SM tumors had the shortest survival; the KEAP1/TP53 DM subgroup had an intermediate prognosis matching that of pure TP53 LUAD, whereas the longest survival was noticed in the double wild-type group. ConclusionsOur data provide a framework for genomically-informed immunotherapy, highlighting the importance of multimodal data integration to achieve a clinically exploitable taxonomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.