Abstract

Kernel density visualization (KDV) is a commonly used visualization tool for many spatial analysis tasks, including disease outbreak detection, crime hotspot detection, and traffic accident hotspot detection. Although the most popular geographical information systems, e.g., QGIS, and ArcGIS, can also support this operation, these solutions are not scalable to generate a single KDV for datasets with million-scale data points, let alone to support exploratory operations (e.g., zoom in, zoom out, and panning operations) with KDV in near real-time (< 5 sec). In this demonstration, we develop a near real-time visualization system, called KDV-Explorer, that is built on top of our prior study on the efficient kernel density computation. Participants will be invited to conduct some kernel density analysis on three large-scale datasets (up to 1.3 million data points), including the traffic accident dataset, crime dataset and COVID-19 dataset. We will also compare the performance of our solution and the solutions in QGIS and ArcGIS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.