Abstract

Aimed at a multiple traveling salesman problem (MTSP) with multiple depots and closed paths, this paper proposes a k-means clustering donkey and a smuggler algorithm (K-DSA). The algorithm first uses the k-means clustering method to divide all cities into several categories based on the center of various samples; the large-scale MTSP is divided into multiple separate traveling salesman problems (TSPs), and the TSP is solved through the DSA. The proposed algorithm adopts a solution strategy of clustering first and then carrying out, which can not only greatly reduce the search space of the algorithm but also make the search space more fully explored so that the optimal solution of the problem can be more quickly obtained. The experimental results from solving several test cases in the TSPLIB database show that compared with other related intelligent algorithms, the K-DSA has good solving performance and computational efficiency in MTSPs of different scales, especially with large-scale MTSP and when the convergence speed is faster; thus, the advantages of this algorithm are more obvious compared to other algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call