Abstract

Acne is the most common inflammatory skin disease in which IL-1 plays a central role. Although alpha-melanocyte-stimulating hormone has immunomodulatory effects, its usefulness as an anti-inflammatory agent in acne is hampered owing to its lipid- and pigment-inducing effects via activation of melanocortin receptors (MC-Rs). We used the immortalized human sebocyte line SZ95 as an in vitro model to investigate the anti-inflammatory potential of KdPT, a tripeptide derivative of the C-terminal end of alpha-melanocyte-stimulating hormone. KdPT potently suppressed IL-1beta-induced IL-6 and IL-8 expression. Mechanistically, KdPT decreased IL-1beta-mediated IkappaBalpha degradation, reduced nuclear accumulation of p65, and attenuated DNA binding of NF-kappaB. Moreover, KdPT reduced IL-1beta-mediated generation of intracellular reactive oxygen species, which contributed to IL-1beta-mediated cytokine induction. KdPT also reduced cell surface binding of fluorochrome-labeled IL-1beta in SZ95 sebocytes. Analysis of the crystal structure of the complex between IL-1beta/IL-1R type I (IL-1RI), followed by computer modeling of KdPT and subsequent modeling of the peptide receptor complex with the crystal structure of IL-1RI via manual docking, further predicted that the tripeptide, through several H-bonds and one hydrophobic bond, interacts with the IL-1RI. Importantly, KdPT did not bind to MC-1Rs, as demonstrated by blocking experiments with a peptide analog of Agouti signaling protein and by binding assays using MC-1R-expressing B16 melanoma cells. Accordingly, KdPT failed to induce melanogenesis. Our data demonstrate a promising anti-inflammatory potential of KdPT and point toward novel future directions in the treatment of acne-as well as of various other IL-1-mediated inflammatory diseases-with this small molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.