Abstract
LaNiO3 perovskite has been successfully used as a catalyst precursor for high temperature water-gas shift (HT-WGS) reaction of reformate gas to produce additional hydrogen from the hydrocarbon reforming. The Ni0 nanoparticles with the particle size of ca. 21 nm obtained after reduction of LaNiO3 perovskite can effectively suppress CO methanation during HT-WGS reaction using pure CO/H2O gas. However, for HT-WGS reaction of reformate gas (including CO, H2O, CO2 and H2), LaNiO3 perovskite exhibits lower catalytic activity with significant CH4 formation predominantly via CO2 methanation. In this work, the CO2 methanation during HT-WGS reaction of reformate gas was suppressed by the addition of potassium onto LaNiO3 perovskite. This is due to the adsorption of H2O on the potassium which is located at the interface between La2O3 and Ni0 nanoparticle (as deduced from XPS and HRTEM results) that forms stable KOH, blocking the methanation of CO2 adsorbed on the La2O3 with H2 adsorbed on the Ni0 nanoparticles. Moreover, the formation of stable KOH also promotes the formation of formate (HCOO) – a key intermediate for WGS reaction over the reduced LaNiO3 perovskite – even at high reaction temperature by continuously supplying hydroxyl group to react with CO adsorbed on the Ni0 nanoparticle, which helps to maintain the catalytic activity for WGS reaction at high reaction temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.