Abstract

The importance of germline-inherited posttranslational histone modifications on priming early mammalian development is just emerging1–4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, while histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It remains unknown as to which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal preimplantation development and zygotic genome activation (ZGA) after fertilization. Loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and long terminal repeat initiated chimeric transcripts during ZGA. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and preimplantation development. Hence, KDM4A plays a crucial role in preserving maternal epigenome integrity required for proper ZGA and transfer of developmental control to the embryo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.