Abstract

In the absence of Wnt activation, cytosolic β-catenin is degraded through GSK3/CK1-mediated phosphorylation at the N terminus. Here, we show that, upon Wnt activation, the stability of nuclear β-catenin is regulated via methylation/demethylation. The protein lysine demethylases Kdm2a and Kdm2b regulate the turnover of non-phosphorylated β-catenin specifically within the nucleus via direct interaction with the fourth and fifth armadillo repeats. The lysine residues within this region are required for the methylation of non-phosphorylated β-catenin, which is demethylated by Kdm2a/b and subsequently ubiquitylated. During Xenopus embryogenesis, kdm2a/b genes are transcribed during early embryogenesis and are required for the specification of the body axis. Kdm2a/b knockdown in Xenopus embryos leads to increases in non-phosphorylated and methylated β-catenin, concurrent with the upregulation of β-catenin target genes. This mechanism is required for controlling the output of the Wnt/β-catenin signaling pathway to maintain normal cellular functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.