Abstract
A paradoxical increase of growth hormone (GH) following oral glucose load has been described in ∼30% of patients with acromegaly and has been related to the ectopic expression of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in somatotropinomas. Recently, we identified germline pathogenic variants and somatic loss of heterozygosity of lysine demethylase 1A (KDM1A) in patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. The ectopic expression of GIPR in both adrenal and pituitary lesions suggests a common molecular mechanism. We aimed to analyze KDM1A gene sequence and KDM1A and GIPR expressions in somatotroph pituitary adenomas. We conducted a cohort study at university hospitals in France and in Italy. We collected pituitary adenoma specimens from acromegalic patients who had undergone pituitary surgery. We performed targeted exome sequencing (gene panel analysis) and array-comparative genomic hybridization on somatic DNA derived from adenomas and performed droplet digital PCR on adenoma samples to quantify KDM1A and GIPR expressions. One hundred and forty-six patients with sporadic acromegaly were studied; 72.6% presented unsuppressed classical GH response, whereas 27.4% displayed a paradoxical rise in GH after oral glucose load. We did not identify any pathogenic variant in the KDM1A gene in the adenomas of these patients. However, we identified a recurrent 1p deletion encompassing the KDM1A locus in 29 adenomas and observed a higher prevalence of paradoxical GH rise (P = .0166), lower KDM1A expression (4.47 ± 2.49 vs 8.56 ± 5.62, P < .0001), and higher GIPR expression (1.09 ± 0.92 vs 0.43 ± 0.51, P = .0012) in adenomas from patients with KDM1A haploinsufficiency compared with those with 2 KDM1A copies. Unlike in GIP-dependent primary bilateral macronodular adrenal hyperplasia, KDM1A genetic variations are not the cause of GIPR expression in somatotroph pituitary adenomas. Recurrent KDM1A haploinsufficiency, more frequently observed in GIPR-expressing adenomas, could be responsible for decreased KDM1A function resulting in transcriptional derepression on the GIPR locus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.