Abstract
DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Simulation and Process Modelling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.