Abstract

Multidimensional adaptive sampling technique is crucial for generating high quality images with effects such as motion blur, depth-of-field and soft shadows, but it costs a lot of memory and computation time. We propose a novel kd-tree based parallel adaptive rendering approach. First, a two-level framework for adaptive sampling in parallel is introduced to reduce the computation time and control the memory cost: in the prepare stage, we coarsely sample the entire multidimensional space and use kd-tree structure to separate it into several multidimensional subspaces; in the main stage, each subspace is refined by a sub kd-tree and rendered in parallel. Second, novel kd-tree based strategies are introduced to measure space’s error value and generate anisotropic Poisson disk samples. The experimental results show that our algorithm produces better quality images than previous ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.