Abstract

Electrodynamic therapy (EDT) has recently emerged as an alternative approach for tumor therapy via the generation of ROS by platinum (Pt) nanoparticles under electric field. An interesting phenomenon observed during EDT is that the increased on-site concentration of chloride ions is highly beneficial for ROS generation and inhibition efficacy. Here, in this study, nanoclusters (KCC), consisting of potassium chloride (KCl) nanocrystals and amorphous calcium carbonate (CaCO3), were synthesized and integrated with platinum nanoparticles (KCCP). In this system, KCC can dissolve and release calcium and chloride ions within tumor cells. The intracellular chloride ions considerably facilitated ROS generation by Pt nanoparticles under an electric field. More importantly, the excessive calcium ions and ROS formed a cycle of mutual promotion and self-amplification in cells, leading to agitated tumor inhibition, both in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.