Abstract

BackgroundNeonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis. Na+/Ca2+ exchangers (NCX1-3) are implicated in Ca2+ brain homeostasis; normally, they extrude Ca2+ to control cell inflammation, but after damage and in epilepsy, they introduce Ca2+ by acting in the reverse mode, amplifying the damage. Changes in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. In this study, the expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal MSG treatment. KB-R7943 was applied as NCXs blocker, but is more selective to NCX3 in reverse mode.MethodsNeonatal MSG treatment was applied to newborn male rats at postnatal days (PD) 1, 3, 5, and 7 (4 g/kg of body weight, s.c.). Western blot analysis was performed on total protein extracts from the EC and Hp to estimate the expression level of NCX1-3 proteins in relative way to the expression of β-actin, as constitutive protein. Electrographic activity of the EC and Hp were acquired before and after intracerebroventricular (i.c.v.) infusion of 4-AP (3 nmol) and KB-R7943 (62.5 pmol), alone or in combination. All experiments were performed at PD60. Behavioural alterations were also recorder.ResultsNeonatal MSG treatment significantly increased the expression of NCX3 protein in both studied regions, and NCX1 protein only in the EC. The 4-AP-induced epileptiform activity was significantly higher in MSG-treated rats than in controls, and KB-R7943 co-administered with 4-AP reduced the epileptiform activity in more prominent way in MSG-treated rats than in controls.ConclusionsThe long-term effects of neonatal MSG treatment include increases on functional expression of NCXs (mainly of NCX3) in the EC and Hp, which seems to contribute to improve the control that KB-R7943 exerted on the seizures induced by 4-AP in adulthood. The results obtained here suggest that the blockade of NCXs could improve seizure control after an excitotoxic process; however, this must be better studied.

Highlights

  • Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis

  • At PD60, the NCX2 expression levels were higher than that of NCX1, followed by the expression levels of NCX3, in both the entorhinal cortex (EC) and Hp, with higher values observed in the EC

  • NCX3 protein expression was augmented by Monosodium glutamate (MSG) treatment in both the Hp and EC at PD60, which suggests that the upregulation of NCX3 expression could be a long-term effect of the treatment and that this outcome may be present in other cerebral regions; these hypotheses should be tested yet

Read more

Summary

Introduction

Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis. Changes in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. The expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal MSG treatment. A significant increase in the expression level of mRNA encoding the sodium/calcium (Na+/Ca2+) exchanger type 3 (NCX3) was reported in the hippocampus (Hp) twenty hours after cessation of treatment [19], but it is unknown if neonatal MSG treatment has any long-term effects on this exchanger

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.