Abstract

Leishmania amazonensis (L. amazonensis) infection can cause severe local and diffuse injuries in humans, a condition clinically known as American cutaneous leishmaniasis (ACL). Currently, the therapeutic approach for ACL is based on Glucantime, which shows high toxicity and poor effectiveness. Therefore, ACL remains a neglected disease with limited options for treatment. Herein, the in vitro antiprotozoal effect and mechanisms of the diterpene kaurenoic acid [ent-kaur-16-en-19-oic acid] (KA) against L. amazonensis were investigated. KA exhibited a direct antileishmanial effect on L. amazonensis promastigotes. Importantly, KA also reduced the intracellular number of amastigote forms and percentage of infected peritoneal macrophages of BALB/c mice. Mechanistically, KA treatment reestablished the production of nitric oxide (NO) in a constitutive NO synthase- (cNOS-) dependent manner, subverting the NO-depleting escape mechanism of L. amazonensis. Furthermore, KA induced increased production of IL-1β and expression of the inflammasome-activating component NLRP12. These findings demonstrate the leishmanicidal capability of KA against L. amazonensis in macrophage culture by triggering a NLRP12/IL-1β/cNOS/NO mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.