Abstract

Thinning is a frequently used approach to produce all kinds of skeleton-like shape features in a topology-preserving way. It is an iterative object reduction: some border points of binary objects are deleted, and the entire process is repeated until stability is reached. In the conventional implementation of thinning algorithms, we have to investigate the deletability of all border points in each iteration step. In this paper, we introduce the concept of k-attempt thinning (\(k\ge 1\)). In the case of a k-attempt algorithm, if a border point ‘survives’ at least k successive iterations, it is ‘immortal’ (i.e., it belongs to the produced feature). We propose a computationally efficient implementation scheme for k-attempt thinning. It is shown that an existing parallel thinning algorithm is 5-attempt, and the advantage of the new implementation scheme over the conventional one is also illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call