Abstract

Eider duck (Somateria mollissima) cerebellar neurons are highly tolerant toward hypoxia in vitro, which in part is due to a hypoxia-induced depression of their spontaneous activity. We have studied whether this response involves ATP-sensitive potassium (KATP) channels, which are known to be involved in the hypoxic/ischemic defense of mammalian neural and muscular tissues, by causing hyperpolarization and reduced ATP demand. Extracellular recordings in the Purkinje layer of isolated normoxic eider duck cerebellar slices showed that their spontaneous neuronal activity decreased significantly compared to in control slices when the KATP channel opener diazoxide (600μM) was added (F1,70=92.781, p<0.001). Adding the KATP channel blocker tolbutamide (400μM) 5min prior to diazoxide completely abolished its effect (F1,55=39.639, p<0.001), strongly suggesting that these drugs have a similar mode of action in this avian species as in mammals. The spontaneous activity of slices treated with tolbutamide in combined hypoxia/chemical anoxia (95% N2–5% CO2 and 2mM NaCN) was not significantly different from that of control slices (F1,203=0.071, p=0.791). Recovery from hypoxia/anoxia was, however, slightly but significantly weaker in tolbutamide-treated slices than in control slices (F1,137=15.539, p<0.001). We conclude that KATP channels are present in eider duck cerebellar neurons and are activated in hypoxia/anoxia, but that they do not play a key role in the protective shut-down response to hypoxia/anoxia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.