Abstract

The objective of this study was to examine if the opening of ATP-sensitive K+ (KATP) channels play an important role in ischemic preconditioning (PC) in the rat heart. A second goal was to test the role of acetylcholine (ACh) in mimicking PC and test if it could be blocked by KATP antagonist. Glibenclamide, a specific antagonist of the KATP channel, was given as two doses of 0.3 mg/kg each at 60 and 30 min before PC. Six groups of rats were subjected to ischemia and reperfusion (I/R) using these protocols: 1) control (I/R), 30-min ischemia followed by 90-min reperfusion (n = 6 rats); 2) preconditioned hearts given 5-min ischemia 10 min before I/R (n = 9 rats); 3) glibenclamide (0.3 mg/kg) treatment 60 and 30 min before PC (n = 13 rats); 4) glibenclamide treatment before I/R (n = 15 rats); 5) ACh infusion for 5 min (18 micrograms/ml) at a rate of 0.15 ml/min followed by equilibration for 10 min before I/R, n = 13 rats; and 6) glibenclamide treatment before ACh infusion followed by I/R (n = 11 rats). Preconditioning reduced the infarcted area (expressed as percent area at risk) from 42.0 +/- 4.4% in control to 8.7 +/- 6% (mean +/- SE, P < 0.05). Glibenclamide blocked the protection conferred by PC (39.1 +/- 4.5%, P < 0.05) without having a significant effect on control nonpreconditioned hearts. ACh infusion in lieu of PC also reduced infarct size to 25.0 +/- 5.63% (P < 0.05 compared with control), which was again blocked by glibenclamide (44.2 +/- 5.0%, P < 0.05). The data suggest that opening of KATP channels for ischemic and ACh-mediated preconditioning is also important in the rat heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call