Abstract

Radiation-induced lung injury (RILI) is a common and severe side effect of thoracic radiotherapy, which compromises patients' quality of life. Recent studies revealed that early vascular injury, especially microvascular damage, played a central role in the development of RILI. For this reason, early vascular protection is essential for RILI therapy. The ATP-sensitive K+ (KATP) channel is an ATP-dependent K+ channel with multiple subunits. The protective role of the KATP channel in vascular injury has been demonstrated in some published studies. In this work, we investigated the effect of KATP channel on RILI. Our findings confirmed that the KATP channel blocker glibenclamide, rather than the KATP channel opener pinacidil, remitted RILI, and in particular, provided protection against radiation-induced vascular injury. Cytology experiments verified that glibenclamide enhanced cell viability, increased the potential of proliferation after irradiation and attenuated radiation-induced apoptosis. Involved mechanisms included increased Ca2+ influx and PKC activation, which were induced by glibenclamide pretreatment. In conclusion, the KATP channel blocker glibenclamide remitted RILI and inhibited the radiation-induced apoptosis of vascular endothelial cells by increased Ca2+ influx and subsequent PKC activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.