Abstract

We establish the coincidence of two classes of Kato class measures in the framework of symmetric Markov processes admitting upper and lower estimates of heat kernel under mild conditions. One class of Kato class measures is defined by way of the heat kernel, another is defined in terms of the Green kernel depending on some exponents related to the heat kernel estimates. We also prove that pth integrable functions on balls with radius 1 having a uniformity of its norm with respect to centers are of Kato class if p is greater than a constant related to the estimate under the same conditions. These are complete extensions of some results for the Brownian motion on Euclidean space by Aizenman and Simon. Our result can be applicable to many examples, for instance, symmetric (relativistic) stable processes, jump processes on d-sets, Brownian motions on Riemannian manifolds, diffusions on fractals and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.