Abstract

We describe a new field campaign over a steep, snowy \(30^{\circ }\) alpine slope, designed to investigate three recurrent issues in experimental studies of steep-slope katabatic winds. (1) Entrainment is known to be present in katabatic jets and has been estimated at the interface between the jet and the boundary layer above it. However, to our knowledge, the slope-normal velocity component has never been measured in the katabatic jet. (2) It is hard to accurately measure turbulence in the first tens of centimetres above the surface using standard sonic anemometry due to the filtering effect of the long instrument path. The present field experiment used a three-dimensional multi-hole pitot-type probe with a high sampling frequency (1250 Hz) that was positioned as close to the surface as 3 cm. It provides three-dimensional mean velocity and Reynolds stress tensor from which dissipation can be estimated, as well as spectra for the turbulent quantities. Energy spectra reveal a well-developed inertial range and capture the inertial scales and some of the dissipative scales. (3) Measuring turbulence on a mast usually provides information about mean and turbulent quantities at certain discrete heights because the sensors are sparsely located inside the jet. We present the first measurements of well-developed katabatic flows where the full wind-speed and temperature profiles acquired, from tethered balloon are available at the location of the measurement mast, which comprises three-dimensional anemometry and thermometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.