Abstract

Transcription and its dynamics are crucial for gene expression regulation. However, very few methods can directly read out transcriptional activity with low-input material and high temporal resolution. This protocol describes KAS-seq, a robust and sensitive approach for capturing genome-wide single-stranded DNA (ssDNA) profiles using N3-kethoxal-assisted labeling. We developed N3-kethoxal, an azido derivative of kethoxal that reacts with deoxyguanosine bases of ssDNA in live cells within 5-10 min at 37 °C, allowing the capture of dynamic changes. Downstream biotinylation of labeled DNA occurs via copper-free click chemistry. Altogether, the KAS-seq procedure involves N3-kethoxal labeling, DNA isolation, biotinylation, fragmentation, affinity pull-down, library preparation, sequencing and bioinformatics analysis. The pre-library construction labeling and enrichment can be completed in as little as 3-4 h and is applicable to both animal tissue and as few as 1,000 cultured cells. Our recent study shows that ssDNA signals measured by KAS-seq simultaneously reveal the dynamics of transcriptionally engaged RNA polymerase (Pol) II, transcribing enhancers, RNA Pol I and Pol III activities and potentially non-canonical DNA structures with high analytical sensitivity. In addition to the experimental protocol, we also introduce here KAS-pipe, a user-friendly integrative data analysis pipeline for KAS-seq.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.