Abstract

Comparative genomic hybridization (CGH) is a relatively new molecular cytogenetic method for detecting chromosomal imbalance. Karyotyping of human metaphases is an important step to assign each chromosome to one of 23 or 24 classes (22 autosomes and two sex chromosomes). Automatic karyotyping in CGH analysis is needed. However, conventional karyotyping approaches based on DAPI images require complex image enhancement procedures. This paper proposes a simple feature extraction method, one that generates density profiles from original true color CGH images and uses normalized profiles as feature vectors without quantization. A classifier is developed by using support vector machine (SVM). It has good generalization ability and needs only limited training samples. Experiment results show that the feature extraction method of using color information in CGH images can improve greatly the classification success rate. The SVM classifier is able to acquire knowledge about human chromosomes from relatively few samples and has good generalization ability. A success rate of moe than 90% has been achieved and the time for training and testing is very short. The feature extraction method proposed here and the SVM-based classifier offer a promising computerized intelligent system for automatic karyotyping of CGH human chromosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.