Abstract
Chromosomal aberrations were analyzed using multicolor fluorescence in situ hybridization (mFISH) in human peripheral blood lymphocytes after in vitro exposure to gamma rays or accelerated (56)Fe ions (1 GeV/nucleon, 145 keV/microm) at Brookhaven National Laboratory (Upton, NY). Doses of 0.3 and 3 Gy were used for both radiation types. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid the population selection bias observed at metaphase as a result of the severe cell cycle delays induced by heavy ions. A total of 1053 karyotypes (G(2) and M phases) were analyzed in irradiated lymphocytes. Results revealed different distribution patterns for chromosomal aberrations after low- and high-LET radiation exposures: Heavy ions induced a much higher fraction of cells with multiple aberrations, while the majority of the aberrant cells induced by low doses of gamma rays contained a single aberration. The high fraction of complex-type exchanges after heavy ions leads to an overestimation of simple-type asymmetrical interchanges (dicentrics) from analysis of Giemsa-stained samples. However, even after a dose of 3 Gy iron ions, about 30% of the cells presented no complex-type exchanges. The involvement of individual chromosomes in exchanges was similar for densely and sparsely ionizing radiation, and no statistically significant evidence of a nonrandom involvement of specific chromosomes was detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.