Abstract

Activation of the transcription factor NF-κB and expression of pro-inflammatory mediators have been considered as major events of acute pancreatitis (AP). Karyopherin alpha 2 (KPNA2), a member of the importin α family, reportedly modulates p65 subcellular localization. This study aimed to investigate the expression and possible functions of KPNA2 in the AP cell and animal model, focusing on its association with NF-κB activation. An AP cell model was established with the cerulein-stimulated AR42J and isolated rat pancreatic acinar cells. The AP rat model was induced by the intraperitoneal injection of cerulein. The secretion of TNF-α, IL-6, and LDH was detected by ELISA kits and the production of NO using nitric oxide kit. Expression of KPNA2 was measured by RT-PCR and Western blot. Expression levels of IKKα, phosphorylation of p65, and total p65 were detected by Western blot. Co-localization of KPNA2 with p65 was observed by immunofluorescence assay. To determine the biological functions of KPNA2 in cerulein-induced inflammatory response, RNA interference was employed to knockdown KPNA2 expression in AR42J and isolated pancreatic acini cells. Cerulein stimulated KPNA2 expression and IL-6, TNF-α, NO, and LDH production in rat pancreatic acinar cells. Cerulein triggered the phosphorylation and nuclear translocation of NF-κB p65 subunit, indicating the NF-κB activation. The co-localization and nuclear accumulation of KPNA2 and p65 were detected in cerulein-treated cells. Knocking down KPNA2 hindered cerulein-induced nuclear transportation of p65 and alleviated the subsequent inflammatory response in rat pancreatic acinar cells. Additionally, KPNA2 expression was significantly up-regulated in cerulein-induced AP rat model. KPNA2-facilitated p65 nuclear translocation promotes NF-κB activation and inflammation in acute pancreatitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call