Abstract
This paper is committed to studying Karush-Kuhn-Tucker (in short, KKT) type necessary and sufficient optimality conditions for non-smooth quasi-convex (geodesic sense) optimization problems on Riemannian manifolds. Recently, Ansari et al. [Ansari QH, Babu F, Zeeshan M. Incremental quasi-subgradient method for minimizing geodesic quasi-convex function on Riemannian manifolds with applications. Numer Funct Anal Optim. 2022;42(13):1492–1521. doi: 10.1080/01630563.2021.2001823] defined the quasi-subdifferential on Riemannian manifolds and established the existence results of the quasi-subdifferential. We provide several auxiliary results for the quasi-subdifferential in the current study. We offer the KKT optimality conditions for the quasi-convex optimization problems on Riemannian manifolds with or without the Slater-constraint qualifications. To verify the suggested outcomes, we formulate numerical examples. In addition, we also provide our results in the Euclidean spaces, which are original and distinct from earlier findings in the Euclidean spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.