Abstract
We propose two different approaches generalizing the Karhunen–Loève series expansion to model and simulate multi-correlated non-stationary stochastic processes. The first approach (muKL) is based on the spectral analysis of a suitable assembled stochastic process and yields series expansions in terms of an identical set of uncorrelated random variables. The second approach (mcKL) relies on expansions in terms of correlated sets of random variables reflecting the cross-covariance structure of the processes. The effectiveness and the computational efficiency of both muKL and mcKL is demonstrated through numerical examples involving Gaussian processes with exponential and Gaussian covariances as well as fractional Brownian motion and Brownian bridge processes. In particular, we study accuracy and convergence rates of our series expansions and compare the results against other statistical techniques such as mixtures of probabilistic principal component analysis. We found that muKL and mcKL provide an effective representation of the multi-correlated process that can be readily employed in stochastic simulation and dimension reduction data-driven problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.