Abstract

As recently as a decade ago, Karenia brevis red tides and their effects on animal resources in the Gulf of Mexico were principally perceived as acute blooms that caused massive fish kills. Although occasional mortalities of higher vertebrates were documented, it has only been in the past decade that conclusive evidence has unequivocally demonstrated that red tides and their brevetoxins are lethal to these organisms. Brevetoxins can be transferred through the food chain and are accumulated in or transferred by biota at many trophic levels. The trophic transfer of brevetoxins in the food web is a complex phenomenon, one that is far more complicated than originally conceived. Unexplained fish kills and other animal mortalities in areas where red tide is endemic are being increasingly linked with post-bloom exposures of biota to brevetoxins. Mass mortality events of endangered Florida manatees ( Trichechus manatus latirostris) follow a consistent spatial and temporal pattern, occurring primarily in the spring in southwestern Florida. Persistent blooms can also cause a cascade of environmental changes, affecting the ecosystem and causing widespread die-offs of benthic communities. Ongoing fish kills from sustained blooms can lead to short-term declines in local populations. Although animal populations in areas where red tide is endemic are unquestionably at risk, it remains to be determined to what extent populations can continue to recover from these sustained effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.