Abstract

Mechanical behaviors of materials are determined by experimental tests. In cases where the tests cannot be performed or a small number of samples can be tested, performing the numerical analysis is widely used for quick and reliable designs. This is particularly important for composite materials that are costly to design and manufacture but are widely used in many industries. Drop weight impact is a widely used test method to investigate the behavior of materials under the impact loads. Particularly in the areas where thin structures are frequently used, the behavior of materials under impact load is important. In this study, the behaviors of Carbon/Epoxy and Glass/Epoxy composite plates under the drop weight impact load was simulated. Composite materials have been used to have symmetrical fiber orientations. The effects of different configurations of Carbon/Epoxy and Glass/Epoxy composite plates are considered. Also, the thickness of the plate was increased by increasing the number of layers of the composite material and the effect of thickness increase on impact load was investigated. As a result, it is seen that the Carbon/Epoxy composite plate has higher impact resistance than the Glass/Epoxy composite plate. The deformation of the Glass/Epoxy composite plate is higher than the Carbon/Epoxy composite plate. The maximum impact force increases with thickness increase for both materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.