Abstract

Manufacturers are pushed to use superalloys such as titanium alloys in the aerospace part due to environmental and economic issues. The refractory properties of titanium alloys result in rapid and premature wear of the cutting tools, especially by thermal diffusion. Therefore, the purpose of this paper is to focus on understanding the characterization of TiAl6V4 in thermo-physic properties. X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity against temperature test, and differential scanning calorimetry (DSC) were conducted to analyze the relationship of phase transformation to thermal properties. Phase analysis showed that TiAl6V4 is composed of two-phase a and b creating a duplex microstructure in which the surface fraction contains about 92,5 % and 7,5 %, respectively. Electrical resistivity against temperature test demonstrated the phase transformation of a to b occurred at 1017°C. This study revealed that the phenomena of phase transformation affected the thermal properties, i.e., thermal capacity, thermal diffusivity, and coefficient of thermal expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.