Abstract

ABSTRACTAs whole-genome sequencing becomes an established component of the microbiologist's toolbox, it is imperative that researchers, clinical microbiologists, and public health professionals have access to genomic analysis tools for the rapid extraction of epidemiologically and clinically relevant information. For the Gram-negative hospital pathogens such as Klebsiella pneumoniae, initial efforts have focused on the detection and surveillance of antimicrobial resistance genes and clones. However, with the resurgence of interest in alternative infection control strategies targeting Klebsiella surface polysaccharides, the ability to extract information about these antigens is increasingly important. Here we present Kaptive Web, an online tool for the rapid typing of Klebsiella K and O loci, which encode the polysaccharide capsule and lipopolysaccharide O antigen, respectively. Kaptive Web enables users to upload and analyze genome assemblies in a web browser. The results can be downloaded in tabular format or explored in detail via the graphical interface, making it accessible for users at all levels of computational expertise. We demonstrate Kaptive Web's utility by analyzing >500 K. pneumoniae genomes. We identify extensive K and O locus diversity among 201 genomes belonging to the carbapenemase-associated clonal group 258 (25 K and 6 O loci). The characterization of a further 309 genomes indicated that such diversity is common among the multidrug-resistant clones and that these loci represent useful epidemiological markers for strain subtyping. These findings reinforce the need for rapid, reliable, and accessible typing methods such as Kaptive Web. Kaptive Web is available for use at http://kaptive.holtlab.net/, and the source code is available at https://github.com/kelwyres/Kaptive-Web.

Highlights

  • As whole-genome sequencing becomes an established component of the microbiologist’s toolbox, it is imperative that researchers, clinical microbiologists, and public health professionals have access to genomic analysis tools for the rapid extraction of epidemiologically and clinically relevant information

  • The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process [46], for which the synthesis and export machinery are encoded in a single 10 to 30-kbp region of the genome known as the K locus [47, 48]

  • We recently explored the K loci among a large diverse K. pneumoniae Whole-genome sequencing (WGS) collection and were able to define 134 distinct loci on the basis of protein coding gene content, suggesting there are at least this many distinct capsule types circulating in the population [38]

Read more

Summary

Introduction

As whole-genome sequencing becomes an established component of the microbiologist’s toolbox, it is imperative that researchers, clinical microbiologists, and public health professionals have access to genomic analysis tools for the rapid extraction of epidemiologically and clinically relevant information. Given the interest in targeting these diverse surface polysaccharides and the lack of accessible serotyping assays for K. pneumoniae, tools for WGS-based K and O locus typing will be essential for researchers, clinicians, and public health microbiologists.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.