Abstract

BackgroundSpasticity is a common sequela of stroke. Traditional assessment methods include relatively coarse scales that may not capture all characteristics of elevated muscle tone. Thus, the aim of this study was to develop a tool to quantitatively assess post-stroke spasticity in the upper extremity.MethodsNinety-six healthy individuals and 46 individuals with stroke participated in this study. The kinematic assessment of passive stretch (KAPS) protocol consisted of passive elbow stretch in flexion and extension across an 80° range in 5 movement durations. Seven parameters were identified and assessed to characterize spasticity (peak velocity, final angle, creep (or release), between-arm peak velocity difference, between-arm final angle, between-arm creep, and between-arm catch angle).ResultsThe fastest movement duration (600 ms) was most effective at identifying impairment in each parameter associated with spasticity. A decrease in peak velocity during passive stretch between the affected and unaffected limb was most effective at identifying individuals as impaired. Spasticity was also associated with a decreased passive range (final angle) and a classic ‘catch and release’ as seen through between-arm catch and creep metrics.ConclusionsThe KAPS protocol and robotic technology can provide a sensitive and quantitative assessment of post-stroke elbow spasticity not currently attainable through traditional measures.

Highlights

  • Spasticity is a common sequela of stroke

  • The patient population was grouped according to Modified Tardieu Scale (MTS) score during the fastest stretch based on the absence (No spasticity, n = 17) or presence (Spasticity, n = 29) of resistance to passive movement

  • Task development The kinematic assessment of passive stretch (KAPS) protocol employed a tightly controlled stretch of the elbow flexors and extensors through a defined range of 80° and assessed across 5 target durations of movement: 1500 ms, 1200 ms, 1000 ms, 800 ms, and 600 ms. This design was selected to mimic the standardization of the Modified Ashworth Scale (MAS) and MTS while including faster and slower durations to better characterize the velocity-dependence of spasticity

Read more

Summary

Introduction

Traditional assessment methods include relatively coarse scales that may not capture all characteristics of elevated muscle tone. Potential targets for neuromotor rehabilitation after stroke are guided by information obtained from sensorimotor assessments. Most commonly assessed using the Modified Ashworth Scale (MAS) [6] and the Modified Tardieu Scale (MTS) [7], spasticity is measured clinically by passively moving a joint through its range at a speed equivalent to counting “one-thousand-and-one” [6] (i.e. MAS) or at three speeds [7] (i.e. MTS) while grading the extent and angle of muscle contraction. The psychometric properties of these assessments indicate that they are moderately suited to assess spasticity and that there is a need for a more objective approach to accurately assess spasticity as a means of determining effects of treatment or guiding rehabilitation strategies

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.