Abstract

The Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded ORF50 protein is a potent transcriptional activator essential for triggering KSHV lytic reactivation. Despite extensive studies, little is known about whether ORF50 possesses the ability to repress gene expression or has an antagonistic action to cellular transcription factors. Previously, we demonstrated that human oncoprotein MDM2 can promote the degradation of ORF50 protein. Herein, we show that abundant ORF50 expression in cells can conversely downregulate MDM2 expression via repressing both the upstream (P1) and internal (P2) promoters of the MDM2 gene. Deletion analysis of the MDM2 P1 promoter revealed that there were two ORF50-dependent negative response elements located from −102 to −63 and from −39 to +1, which contain Sp1-binding sites. For the MDM2 P2 promoter, the ORF50-dependent negative response element was identified in the region from −110 to −25, which is coincident with the location of two known p53-binding sites. Importantly, we further demonstrated that overexpression of Sp1 or p53 in cells indeed upregulated MDM2 expression; however, coexpression with ORF50 protein remarkably reduced the Sp1- or p53-mediated MDM2 upregulation. Collectively, our findings propose a reciprocal negative regulation between ORF50 and MDM2 and uncover that ORF50 decreases MDM2 expression through repressing Sp1- and p53-mediated transactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call