Abstract
In this article we provide arguments for constructing Kaplansky classes in the category of complexes out of a Kaplansky class of modules. This leads to several complete cotorsion theories in such categories. Our method gives a unified proof for most of the known cotorsion theories in the category of complexes and can be applied to the category of quasi-coherent sheaves over a scheme as well as the category of the representations of a quiver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.