Abstract

At very high densities, QCD is in the color–flavor-locked phase, which is a color-superconducting phase. The diquark condensates break chiral symmetry in the same way as it is broken in vacuum QCD and gives rise to an octet of pseudo-Goldstone bosons and a superfluid mode. The lightest of these are the charged and neutral kaons. For energies below the superconducting gap, the kaons are described by an O ( 2 ) × O ( 2 ) -symmetric effective scalar field theory with chemical potentials. We use this effective theory to study Bose-condensation of kaons and their properties as functions of the temperature and the chemical potentials. We use the 2-particle irreducible effective action formalism in the Hartree approximation. The renormalization of the gap equations and the effective potential is studied in detail and we show that the counterterms are independent of temperature and chemical potentials. We determine the phase diagram and the medium-dependent quasiparticle masses. It is shown that the Goldstone theorem is satisfied to a very good approximation. The effects of imposing electric charge neutrality is examined as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call